Mechanical Properties and Thermal Stabilities of Al-CuAl<SUB>2</SUB>-Si, Al-CuAl<SUB>2</SUB>-NiCu<SUB>3</SUB>Al<SUB>6</SUB> and Al-CuAl<SUB>2</SUB>-FeCu<SUB>2</SUB>Al<SUB>7</SUB> Ternary Eutectic Composites

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure Characterization and Mechanical Properties of Al-SiCp Composites

In recent years the aluminum matrix composites are gaining wide spread applications in automotive, aerospace, defense, sport and other industries. The reason for this is their exciting properties like high specific strength, stiffness, hardness, wear resistance, dimensional stability and designer flexibility. The present work reports on mechanical properties and microstructure analysis of Al-Si...

متن کامل

Effect OF SI and AL on the Microstructure, Mechanical Properties and Machinability of 65CU-35ZN Brass

Relations between the microstructure, mechanical properties and machinability of as-cast 65Cu-35Zn brass with various amounts of Al from 0 to 4.72 and Si from 0 to 3.62 wt% were investigated. Both Si and Al initially enhanced the UTS and toughness of the brass samples, which led to improvement in machinability due to a reduction in the main cutting force. A duplex brass with random oriented α p...

متن کامل

A Comparative Study on the Microstructure and Mechanical Properties of Al-Si-Cu/1wt %NCP Composites after T6 Heat Treatment

In this article, microstructural characteristics and mechanical properties of Al-Si-Cu/NCP composites were evaluated. Reinforced nanocomposites with 1 wt% nano-clay were fabricated by the method of the stir casting. Stirring times and temperatures were variable parameters to produce specimens. Consequently, the effect of a T6 heat treatment, which contained solutioning at 490 ºC for ...

متن کامل

Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties

Al(1060)/Mg(AZ31)/Al(1060) multilayered composite was successfully produced using an accumulative roll bonding (ARB) process for up to four cycles at an elevated temperature (400 °C). The microstructure evolution of the composites and the bonding characteristics at the interfaces between Al and Mg layers with increasing ARB cycles were characterized through optical microscopy, field emission sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Japan Institute of Metals and Materials

سال: 1972

ISSN: 0021-4876,1880-6880

DOI: 10.2320/jinstmet1952.36.12_1224